About: Model-Based Boosting Changes:Fetched by r-cran-robot on 2013-04-01 00:00:06.324985
|
About: libDAI provides free & open source implementations of various (approximate) inference methods for graphical models with discrete variables, including Bayesian networks and Markov Random Fields. Changes:Release 0.3.2 fixes various bugs and adds GLC (Generalized Loop Corrections) written by Siamak Ravanbakhsh.
|
About: PCVM library a c++/armadillo implementation of the Probabilistic Classification Vector Machine. Changes:30.10.2015 * code has been revised in some places fixing also some errors different multiclass schemes and hdf5 file support added. Some speed ups and memory savings by better handling of intermediate objects. 27.05.2015: - Matlab binding under Windows available. Added a solution file for VS'2013 express to compile a matlab mex binding. Can not yet confirm that under windows the code is really using multiple cores (under linux it does) 29.04.2015 * added an implementation of the Nystroem based PCVM includes: Nystroem based singular value decomposition (SVD), eigenvalue decomposition (EVD) and pseudo-inverse calculation (PINV) 22.04.2015 * implementation of the PCVM released
|
About: The Advanced Data mining And Machine learning System (ADAMS) is a flexible workflow engine aimed at quickly building and maintaining data-driven, reactive workflows, easily integrated into business processes. Changes:Some highlights:
|
About: The GPstuff toolbox is a versatile collection of Gaussian process models and computational tools required for inference. The tools include, among others, various inference methods, sparse approximations and model assessment methods. Changes:2016-06-09 Version 4.7 Development and release branches available at https://github.com/gpstuff-dev/gpstuff New features
Improvements
Bugfixes
|
About: MultiBoost is a multi-purpose boosting package implemented in C++. It is based on the multi-class/multi-task AdaBoost.MH algorithm [Schapire-Singer, 1999]. Basic base learners (stumps, trees, products, Haar filters for image processing) can be easily complemented by new data representations and the corresponding base learners, without interfering with the main boosting engine. Changes:Major changes :
Minor fixes:
|
About: A Laboratory for Recursive Partytioning Changes:Fetched by r-cran-robot on 2013-04-01 00:00:06.775432
|
About: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly Changes:Fetched by r-cran-robot on 2018-01-01 00:00:07.696284
|
About: The GPML toolbox is a flexible and generic Octave/Matlab implementation of inference and prediction with Gaussian process models. The toolbox offers exact inference, approximate inference for non-Gaussian likelihoods (Laplace's Method, Expectation Propagation, Variational Bayes) as well for large datasets (FITC, VFE, KISS-GP). A wide range of covariance, likelihood, mean and hyperprior functions allows to create very complex GP models. Changes:Logdet-estimation functionality for grid-based approximate covariances
More generic infEP functionality
New infKL function contributed by Emtiyaz Khan and Wu Lin
Time-series covariance functions on the positive real line
New covariance functions
|
About: Script-friendly command-line tools for machine learning and data mining tasks. (The command-line tools wrap functionality from a public domain C++ class library.) Changes:Added support for CUDA GPU-parallelized neural network layers, and several other new features. Full list of changes at http://waffles.sourceforge.net/docs/changelog.html
|
About: Kernel-Based Analysis of Biological Sequences Changes:
|
About: The Accord.NET Framework is a .NET machine learning framework combined with audio and image processing libraries completely written in C#. It is a complete framework for building production-grade computer vision, computer audition, signal processing and statistics applications even for commercial use. A comprehensive set of sample applications provide a fast start to get up and running quickly, and an extensive online documentation helps fill in the details. Changes:For a complete list of changes, please see the full release notes at the release details page at: https://github.com/accord-net/framework/releases/tag/v3.8.0
|
About: Wrapper Algorithm for All Relevant Feature Selection Changes:Fetched by r-cran-robot on 2018-09-01 00:00:04.516878
|
About: Python Machine Learning Toolkit Changes:Added LASSO (using coordinate descent optimization). Made SVM classification (learning and applying) much faster: 2.5x speedup on yeast UCI dataset.
|
About: Tools to convert datasets from various formats to various formats, performance measures and API functions to communicate with mldata.org Changes:
|
About: The Cognitive Foundry is a modular Java software library of machine learning components and algorithms designed for research and applications. Changes:
|
About: Bayesian Reasoning and Machine Learning toolbox Changes:Fixed some small bugs and updated some demos.
|
About: FEAST provides implementations of common mutual information based filter feature selection algorithms (mim, mifs, mrmr, cmim, icap, jmi, disr, fcbf, etc), and an implementation of RELIEF. Written for C/C++ & Matlab. Changes:Major refactoring of FEAST to improve speed and portability.
|
About: BayesOpt is an efficient, C++ implementation of the Bayesian optimization methodology for nonlinear-optimization, experimental design and stochastic bandits. In the literature it is also called Sequential Kriging Optimization (SKO) or Efficient Global Optimization (EGO). There are also interfaces for C, Matlab/Octave and Python. Changes:-Fixed bug in save/restore. -Fixed bug in initial design.
|
About: ELKI is a framework for implementing data-mining algorithms with support for index structures, that includes a wide variety of clustering and outlier detection methods. Changes:Additions and improvements from ELKI 0.7.0 to 0.7.1: Algorithm additions:
Important bug fixes:
UI improvements:
Smaller changes:
|