About: Grid-Soccer Simulator is a multi-agent soccer simulator in a grid-world environment. The environment provides a test-bed for machine-learning, and control algorithms, especially multi-agent reinforcement learning. Changes:Initial Announcement on mloss.org.
|
About: glyph is a python 3 library based on deap providing abstraction layers for symbolic regression problems. Changes:Initial Announcement on mloss.org.
|
About: The gmm toolbox contains code for density estimation using mixtures of Gaussians: Starting from simple kernel density estimation with spherical and diagonal Gaussian kernels over manifold Parzen window until mixtures of penalised full Gaussians with only a few components. The toolbox covers many Gaussian mixture model parametrisations from the recent literature. Most prominently, the package contains code to use the Gaussian Process Latent Variable Model for density estimation. Most of the code is written in Matlab 7.x including some MEX files. Changes:Initial Announcement on mloss.org
|
About: GMRFLib is a library in C for fast and exact simulation of Gaussian Markov Random Fields (GMRF) on graphs.unconditional simulation of a GMRF, conditional simulation from a GMRF Changes:Initial Announcement on mloss.org.
|
About: Gaussian process RTS smoothing (forward-backward smoothing) based on moment matching. Changes:Initial Announcement on mloss.org.
|
About: This is a C++ software designed to train large-scale SVMs for binary classification. The algorithm is also implemented in parallel (**PGPDT**) for distributed memory, strictly coupled multiprocessor [...] Changes:Initial Announcement on mloss.org.
|
About: GPgrid toolkit for fast GP analysis on grid input Changes:Initial Announcement on mloss.org.
|
About: The GPML toolbox is a flexible and generic Octave/Matlab implementation of inference and prediction with Gaussian process models. The toolbox offers exact inference, approximate inference for non-Gaussian likelihoods (Laplace's Method, Expectation Propagation, Variational Bayes) as well for large datasets (FITC, VFE, KISS-GP). A wide range of covariance, likelihood, mean and hyperprior functions allows to create very complex GP models. Changes:Logdet-estimation functionality for grid-based approximate covariances
More generic infEP functionality
New infKL function contributed by Emtiyaz Khan and Wu Lin
Time-series covariance functions on the positive real line
New covariance functions
|
About: The GPstuff toolbox is a versatile collection of Gaussian process models and computational tools required for inference. The tools include, among others, various inference methods, sparse approximations and model assessment methods. Changes:2016-06-09 Version 4.7 Development and release branches available at https://github.com/gpstuff-dev/gpstuff New features
Improvements
Bugfixes
|
About: GPUML is a library that provides a C/C++ and MATLAB interface for speeding up the computation of the weighted kernel summation and kernel matrix construction on GPU. These computations occur commonly in several machine learning algorithms like kernel density estimation, kernel regression, kernel PCA, etc. Changes:Initial Announcement on mloss.org.
|
About: GradMC is an algorithm for MR motion artifact removal implemented in Matlab Changes:Added support for multi-rigid motion correction.
|
About: Java package implementing a kernel for (molecular) graphs based on iterative graph similarity and optimal assignments. Changes:Initial Announcement on mloss.org.
|
About: This software is aimed at performing supervised/unsupervised learning on graph data, where each graph is represented as binary indicators of subgraph features. Changes:Initial Announcement on mloss.org.
|
About: The GraphDemo provides Matlab GUIs to explore similarity graphs and their use in machine learning. It aims to highlight the behavior of different kinds of similarity graphs and to demonstrate their [...] Changes:Initial Announcement on mloss.org.
|
About: This is a Matlab/C++ "toolbox" of code for learning and inference with graphical models. It is focused on parameter learning using marginalization in the high-treewidth setting. Changes:Initial Announcement on mloss.org.
|
About: Multicore/distributed large scale machine learning framework. Changes:Update version.
|
About: GritBot is an data cleaning and outlier/anomaly detection program. Changes:Initial Announcement on mloss.org.
|
About: Software for graph similarity search for massive graph databases Changes:Initial Announcement on mloss.org.
|
About: Robust sparse representation has shown significant potential in solving challenging problems in computer vision such as biometrics and visual surveillance. Although several robust sparse models have been proposed and promising results have been obtained, they are either for error correction or for error detection, and learning a general framework that systematically unifies these two aspects and explore their relation is still an open problem. In this paper, we develop a half-quadratic (HQ) framework to solve the robust sparse representation problem. By defining different kinds of half-quadratic functions, the proposed HQ framework is applicable to performing both error correction and error detection. More specifically, by using the additive form of HQ, we propose an L1-regularized error correction method by iteratively recovering corrupted data from errors incurred by noises and outliers; by using the multiplicative form of HQ, we propose an L1-regularized error detection method by learning from uncorrupted data iteratively. We also show that the L1-regularization solved by soft-thresholding function has a dual relationship to Huber M-estimator, which theoretically guarantees the performance of robust sparse representation in terms of M-estimation. Experiments on robust face recognition under severe occlusion and corruption validate our framework and findings. Changes:Initial Announcement on mloss.org.
|
About: hapFabia is an R package for identification of very short segments of identity by descent (IBD) characterized by rare variants in large sequencing data. It detects 100 times smaller segments than previous methods. Changes:o citation update o plot function improved
|