Showing Items 541-560 of 676 on page 28 of 34: First Previous 23 24 25 26 27 28 29 30 31 32 33 Next Last
About: yaplf (Yet Another Python Learning Framework) is an extensible machine learning framework written in python Changes:Initial Announcement on mloss.org.
|
About: This software is an implementation of Hidden Markov Support Vector Machines (HMSVMs). Changes:Initial Announcement on mloss.org.
|
About: This software is designed for learning translation invariant kernels for classification with support vector machines. Changes:Initial Announcement on mloss.org.
|
About: This software package implements a series of statistical mixture models for bilingual text classificacion trained by the EM algorihtm. Changes:Initial Announcement on mloss.org.
|
About: GIDOC (Gimp-based Interactive transcription of old text DOCuments) is a computer-assisted transcription prototype for handwritten text in old documents. It is a first attempt to provide integrated support for interactive-predictive page layout analysis, text line detection and handwritten text transcription. GIDOC is built on top of the well-known GNU Image Manipulation Program (GIMP), and uses standard techniques and tools for handwritten text preprocessing and feature extraction, HMM-based image modelling, and language modelling. Changes:Updated version for mloss 2010
|
About: This toolbox provides functions for maximizing and minimizing submodular set functions, with applications to Bayesian experimental design, inference in Markov Random Fields, clustering and others. Changes:
|
About: RLS2 is an instance of multiple kernel learning algorithm to simultaneously learn a regularized predictor and the kernel function. RLS2LIN is a version of RLS2 specialized to linear kernels on each feature. The package contains a set of scripts that implements RLS2 and RLS2LIN, together with a Graphic User Interface to load data, perform training, validation, and plot results. Changes:
|
About: Orthonormal wavelet transform for D dimensional tensors in L levels. Generic quadrature mirror filters and tensor sizes. Runtime is O(n), plain C, MEX-wrapper and demo provided. Changes:Initial Announcement on mloss.org. |
About: ALGLIB is an open source numerical analysis library distributed under GPL 2+. It implements both general numerical algorithms and machine learning algorithms. ALGLIB can be used from C#, C++, FreePascal, VBA and other languages. It is the only numerical analysis library which uses automatic translation to generate source code written in different programming languages with 100% identical functionality. Changes:
|
About: The open source Error-Correcting Output Codes (ECOC) library contains both state-of-the-art coding and decoding designs, as well as the option to include your own coding, decoding, and base classifier. Changes:Initial Announcement on mloss.org.
|
About: PyBrain is a versatile machine learning library for Python. Its goal is to provide flexible, easy-to-use yet still powerful algorithms for machine learning tasks, including a variety of predefined [...] Changes:
|
About: GPUML is a library that provides a C/C++ and MATLAB interface for speeding up the computation of the weighted kernel summation and kernel matrix construction on GPU. These computations occur commonly in several machine learning algorithms like kernel density estimation, kernel regression, kernel PCA, etc. Changes:Initial Announcement on mloss.org.
|
About: The JINSECT toolkit is a Java-based toolkit and library that supports and demonstrates the use of n-gram graphs within Natural Language Processing applications, ranging from summarization and summary evaluation to text classi?cation and indexing. Changes:
|
About: Stepwise Diagonal Discriminant Analysis Changes:Fetched by r-cran-robot on 2012-02-01 00:00:11.677447
|
About: OXlearn is a free neural network simulation software that enables you to build, train, test and analyse connectionist neural network models. Because OXlearn is implemented as a Matlab toolbox you can run it on all operation systems (Windows, Linux, MAC, etc.), and there is a compiled version for XP. Changes:Initial Announcement on mloss.org.
|
About: A set of Perl programs for generating and manipulating ROC curves. Changes:Initial Announcement on mloss.org.
|
About: Given many points in ROC (Receiver Operator Characteristics) space, computes the convex hull. Changes:Initial Announcement on mloss.org.
|
About: A fast implementation of several stochastic gradient descent learners for classification, ranking, and ROC area optimization, suitable for large, sparse data sets. Includes Pegasos SVM, SGD-SVM, Passive-Aggressive Perceptron, Perceptron with Margins, Logistic Regression, and ROMMA. Commandline utility and API libraries are provided. Changes:Initial Announcement on mloss.org.
|
About: BACKGROUND:Over the last decade several prediction methods have been developed for determining the structural and functional properties of individual protein residues using sequence and sequence-derived information. Most of these methods are based on support vector machines as they provide accurate and generalizable prediction models. RESULTS:We present a general purpose protein residue annotation toolkit (svmPRAT) to allow biologists to formulate residue-wise prediction problems. svmPRAT formulates the annotation problem as a classification or regression problem using support vector machines. One of the key features of svmPRAT is its ease of use in incorporating any user-provided information in the form of feature matrices. For every residue svmPRAT captures local information around the reside to create fixed length feature vectors. svmPRAT implements accurate and fast kernel functions, and also introduces a flexible window-based encoding scheme that accurately captures signals and pattern for training eective predictive models. CONCLUSIONS:In this work we evaluate svmPRAT on several classification and regression problems including disorder prediction, residue-wise contact order estimation, DNA-binding site prediction, and local structure alphabet prediction. svmPRAT has also been used for the development of state-of-the-art transmembrane helix prediction method called TOPTMH, and secondary structure prediction method called YASSPP. This toolkit developed provides practitioners an efficient and easy-to-use tool for a wide variety of annotation problems. Availability: http://www.cs.gmu.edu/~mlbio/svmprat/ Changes:Initial Announcement on mloss.org.
|