public class GeneralizedDoubleGaussL2 extends Kernel<double[]>
| Constructor and Description |
|---|
GeneralizedDoubleGaussL2(double[] gamma)
Constructor using an array of weighted for the generalized L2 distance
|
| Modifier and Type | Method and Description |
|---|---|
double[][] |
distanceMatrix(java.util.List<TrainingSample<double[]>> l,
int x) |
double[][] |
distanceMatrixUnthreaded(java.util.List<TrainingSample<double[]>> l,
int x) |
double |
distanceValueOf(double[] t1,
double[] t2) |
double |
distanceValueOf(double[] t1,
double[] t2,
int x) |
double[] |
getGammas() |
void |
setGammas(double[] gamma) |
double |
valueOf(double[] t1)
kernel similarity to zero
|
double |
valueOf(double[] t1,
double[] t2)
compute the kernel similarity between two element of input space
|
getKernelMatrix, getNormalizedKernelMatrix, normalizedValueOf, setName, toStringpublic GeneralizedDoubleGaussL2(double[] gamma)
gamma - the array of weightspublic double valueOf(double[] t1,
double[] t2)
Kernelpublic double valueOf(double[] t1)
Kernelpublic double[] getGammas()
public void setGammas(double[] gamma)
gamma - inverse of std dev parameterpublic double distanceValueOf(double[] t1,
double[] t2)
public double distanceValueOf(double[] t1,
double[] t2,
int x)
public double[][] distanceMatrix(java.util.List<TrainingSample<double[]>> l, int x)
public double[][] distanceMatrixUnthreaded(java.util.List<TrainingSample<double[]>> l, int x)