public class SimpleMKLDensity<T> extends java.lang.Object implements DensityFunction<T>
In case C=1, it might be equivalent to a Parzen estimator, albeight performing kernel selection
| Constructor and Description |
|---|
SimpleMKLDensity()
default constructor
|
| Modifier and Type | Method and Description |
|---|---|
void |
addKernel(Kernel<T> k)
adds a kernel to the MKL problem
|
double |
getC() |
int |
getMaxIteration() |
void |
setC(double c) |
void |
setMaxIteration(int maxIteration) |
void |
train(java.util.List<T> l)
Train the density function on the specified training set
|
void |
train(T e)
Adds a sample to the training set and train the density function
|
double |
valueOf(T e)
Value of the density function for the specified sample
|
public void train(T e)
DensityFunctiontrain in interface DensityFunction<T>e - the sample to add to the training setpublic void train(java.util.List<T> l)
DensityFunctiontrain in interface DensityFunction<T>l - the list of training samplespublic double valueOf(T e)
DensityFunctionvalueOf in interface DensityFunction<T>e - the sample to evaluatepublic int getMaxIteration()
public void setMaxIteration(int maxIteration)
public double getC()
public void setC(double c)