All entries.
Showing Items 11-20 of 642 on page 2 of 65: Previous 1 2 3 4 5 6 7 Next Last

Logo BRML toolbox 070711

by DavidBarber - July 17, 2011, 19:30:15 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 65763 views, 4919 downloads, 1 subscription

About: Bayesian Reasoning and Machine Learning toolbox

Changes:

Fixed some small bugs and updated some demos.


Logo JMLR Darwin 1.9

by sgould - September 8, 2015, 06:50:37 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 62505 views, 12844 downloads, 4 subscriptions

About: A platform-independent C++ framework for machine learning, graphical models, and computer vision research and development.

Changes:

Version 1.9:

  • Replaced drwnInPaint class with drwnImageInPainter class and added inPaint application
  • Added function to read CIFAR-10 and CIFAR-100 style datasets (see http://www.cs.utoronto.ca/~kriz/cifar.html)
  • Added drwnMaskedPatchMatch, drwnBasicPatchMatch, drwnSelfPatchMatch and basicPatchMatch application
  • drwnPatchMatchGraph now allows multiple matches to the same image
  • Upgraded wxWidgets to 3.0.2 (problems on Mac OS X)
  • Switched Mac OS X compilation to libc++ instead of libstdc++
  • Added Python scripts for running experiments and regression tests
  • Refactored drwnGrabCutInstance class to support both GMM and colour histogram model
  • Added cacheSortIndex to drwnDecisionTree for trading-off speed versus memory usage
  • Added mexLoadPatchMatchGraph for loading drwnPatchMatchGraph objects into Matlab
  • Improved documentation, other bug fixes and performance improvements

Logo NaN toolbox 3.1.2

by schloegl - January 22, 2017, 12:24:59 CET [ Project Homepage BibTeX Download ] 59744 views, 12158 downloads, 3 subscriptions

About: NaN-toolbox is a statistics and machine learning toolbox for handling data with and without missing values.

Changes:

Changes in v.3.1.2 - improve configuration and build system - support of more platforms (including Octave 4.2.0) improved

Changes in v.3.0.3 - improve compatibility for Octave on Windows

Changes in v.3.0.1 - fix packaging for octave

Changes in v.2.8.5 - bug fix: trimmean - compiler support for gcc-5 and clang - fix typos

For details see the CHANGELOG at http://pub.ist.ac.at/~schloegl/matlab/NaN/CHANGELOG


About: SVDFeature is a toolkit for developing generic collaborative filtering algorithms by defining features.

Changes:

JMLR MLOSS version.


Logo JMLR libDAI 0.3.2

by jorism - July 17, 2015, 15:59:55 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 57217 views, 10753 downloads, 4 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarWhole Star
(based on 1 vote)

About: libDAI provides free & open source implementations of various (approximate) inference methods for graphical models with discrete variables, including Bayesian networks and Markov Random Fields.

Changes:

Release 0.3.2 fixes various bugs and adds GLC (Generalized Loop Corrections) written by Siamak Ravanbakhsh.


Logo JMLR Sally 1.0.0

by konrad - March 26, 2015, 17:01:35 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 49869 views, 9508 downloads, 3 subscriptions

About: A Tool for Embedding Strings in Vector Spaces

Changes:

Support for explicit selection of granularity added. Several minor bug fixes. We have reached 1.0


Logo r-cran-mboost 2.2-2

by r-cran-robot - February 8, 2013, 00:00:00 CET [ Project Homepage BibTeX Download ] 48552 views, 8622 downloads, 1 subscription

About: Model-Based Boosting

Changes:

Fetched by r-cran-robot on 2013-04-01 00:00:06.324985


Logo JMLR MultiBoost 1.2.02

by busarobi - March 31, 2014, 16:13:04 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 45929 views, 7350 downloads, 1 subscription

About: MultiBoost is a multi-purpose boosting package implemented in C++. It is based on the multi-class/multi-task AdaBoost.MH algorithm [Schapire-Singer, 1999]. Basic base learners (stumps, trees, products, Haar filters for image processing) can be easily complemented by new data representations and the corresponding base learners, without interfering with the main boosting engine.

Changes:

Major changes :

  • The “early stopping” feature can now based on any metric output with the --outputinfo command line argument.

  • Early stopping now works with --slowresume command line argument.

Minor fixes:

  • More informative output when testing.

  • Various compilation glitch with recent clang (OsX/Linux).


Logo python weka wrapper 0.3.10

by fracpete - January 4, 2017, 10:21:33 CET [ Project Homepage BibTeX Download ] 45621 views, 9154 downloads, 3 subscriptions

About: A thin Python wrapper that uses the javabridge Python library to communicate with a Java Virtual Machine executing Weka API calls.

Changes:
  • "types.double_matrix_to_ndarray" no longer assumes a square matrix (https://github.com/fracpete/python-weka-wrapper/issues/48)
  • "len(Instances)" now returns the number of rows in the dataset (module "weka.core.dataset")
  • added method "insert_attribute" to the "Instances" class
  • added class method "create_relational" to the "Attribute" class
  • upgraded Weka to 3.9.1

Logo FEAST 2.0.0

by apocock - January 8, 2017, 00:49:19 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 45222 views, 7990 downloads, 3 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarWhole Star
(based on 2 votes)

About: FEAST provides implementations of common mutual information based filter feature selection algorithms (mim, mifs, mrmr, cmim, icap, jmi, disr, fcbf, etc), and an implementation of RELIEF. Written for C/C++ & Matlab.

Changes:

Major refactoring of FEAST to improve speed and portability.

  • FEAST now clones the input data if it's floating point and discretises it to unsigned ints once in a single pass. This improves the speed by about 30%.
  • FEAST now has unsigned int entry points which avoid this discretisation and are much faster if the data is already categorical.
  • Added weighted feature selection algorithms to FEAST which can be used for cost-sensitive feature selection.
  • Added a Java API using JNI.
  • FEAST now returns the internal score for each feature according to the criterion. Available in all three APIs.
  • Rearranged the repository to make it easier to work with. Header files are now in `include`, source in `src`, the MATLAB API is in `matlab/` and the Java API is in `java/`.
  • FEAST now compiles cleanly using `-std=c89 -Wall -Werror`.

Showing Items 11-20 of 642 on page 2 of 65: Previous 1 2 3 4 5 6 7 Next Last