Project details for Variational Inference for the Indian Buffet Process

Logo Variational Inference for the Indian Buffet Process 0.1

by finale - May 4, 2009, 16:03:25 CET [ BibTeX BibTeX for corresponding Paper Download ]

view (3 today), download ( 0 today ), 2 subscriptions

Description:

Matlab code for performing variational inference in the Indian Buffet Process with a linear-Gaussian likelihood model.

We provide two kinds of variational approximations (discussed in depth in the corresponding paper and technical report) that trade-off between the speed and accuracy of the inference. In general, we find that this software outperforms similarly optimised Gibbs samplers for large, complex datasets, but is less efficient for smaller/low-dimensional data. Also provided is code for several (tunable) heuristics for improving the optimisation steps in the inference routines.

Archive includes a toy dataset and a sample test file.

Changes to previous version:

Initial Announcement on mloss.org.

BibTeX Entry: Download
Corresponding Paper BibTeX Entry: Download
Supported Operating Systems: Agnostic
Data Formats: Matlab
Tags: Matlab, Indian Buffet Process, Nonparametric Bayes, Variational Inference
Archive: download here

Comments

No one has posted any comments yet. Perhaps you'd like to be the first?

Leave a comment

You must be logged in to post comments.