Projects that are tagged with symbolic differentiation.


Logo Theano 0.8.1

by jaberg - April 1, 2016, 19:22:01 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 24202 views, 4218 downloads, 3 subscriptions

About: A Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. Dynamically generates CPU and GPU modules for good performance. Deep Learning Tutorials illustrate deep learning with Theano.

Changes:

Theano 0.8.1 (29th of March, 2016)

* Fix compilation on Mac with CLT 7.3

Theano 0.8 (21th of March, 2016)

We recommend to everyone to upgrade to this version.

Highlights:

* Python 2 and 3 support with the same code base
* Faster optimization
* Integration of CuDNN for better GPU performance
* Many Scan improvements (execution speed up, ...)
* optimizer=fast_compile moves computation to the GPU.
* Better convolution on CPU and GPU. (CorrMM, cudnn, 3d conv, more parameter)
* Interactive visualization of graphs with d3viz
* cnmem (better memory management on GPU)
* BreakpointOp
* Multi-GPU for data parallism via Platoon (https://github.com/mila-udem/platoon/)
* More pooling parameter supported
* Bilinear interpolation of images
* New GPU back-end:

    * Float16 new back-end (need cuda 7.5)
    * Multi dtypes
    * Multi-GPU support in the same process

Logo DiffSharp 0.7.7

by gbaydin - January 4, 2016, 00:57:35 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 8366 views, 1732 downloads, 3 subscriptions

About: DiffSharp is a functional automatic differentiation (AD) library providing gradients, Hessians, Jacobians, directional derivatives, and matrix-free Hessian- and Jacobian-vector products as higher-order functions. It allows exact and efficient calculation of derivatives, with support for nesting.

Changes:

Fixed: Bug fix in forward AD implementation of Sigmoid and ReLU for D, DV, and DM (fixes #16, thank you @mrakgr)

Improvement: Performance improvement by removing several more Parallel.For and Array.Parallel.map operations, working better with OpenBLAS multithreading

Added: Operations involving incompatible dimensions of DV and DM will now throw exceptions for warning the user