Projects running under platform independent.
Showing Items 1-20 of 77 on page 1 of 4: 1 2 3 4 Next

Logo The Statistical ToolKit 0.8.2

by joblion - November 17, 2014, 20:29:50 CET [ Project Homepage BibTeX Download ] 202 views, 51 downloads, 2 subscriptions

About: STK++: A Statistical Toolkit Framework in C++

Changes:

Updating description


Logo KeBABS 1.0.0

by UBod - November 7, 2014, 14:17:57 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 346 views, 48 downloads, 1 subscription

About: Kernel-Based Analysis Of Biological Sequences

Changes:

Initial Announcement on mloss.org.


Logo BayesPy 0.2.2

by jluttine - November 1, 2014, 11:06:01 CET [ Project Homepage BibTeX Download ] 2351 views, 645 downloads, 3 subscriptions

About: Variational Bayesian inference tools for Python

Changes:
  • Fix normalization of categorical Markov chain probabilities (fixes HMM demo)
  • Fix initialization from parameter values

Logo pyGPs 1.3

by mn - October 20, 2014, 16:03:28 CET [ Project Homepage BibTeX Download ] 2628 views, 598 downloads, 3 subscriptions

About: pyGPs is a Python package for Gaussian process (GP) regression and classification for machine learning.

Changes:

Changelog pyGPs v1.3

October 19th 2014

documentation updates:

  • DOC: model.fit() is now named model.getPosterior
  • DOC: typo fixed: cov.LIN changed to cov.Linear
  • DOC: removed cov.Periodic() in demos because its limited in 1-d data.
  • API file updated accordingly

structural updates:

  • removed unused ScalePrior attribute in most inference method
  • added function jitchol, which added a small jitter(instead of doing Cholesky decomposition directly) to the diagonal when the kernel matrix is ill conditioned.
  • thrown error when using periodic covariance functions for non-1d data. We also removed cov.Periodic() in demos because its limited usage.
  • combined equally spaced positions of inputs as test positions as well in plot methods to get a more accurate plotting.
  • rename model.fit() to model.getPosterior(), while model.optimize() stays the same. (since it is confusing for some users that the name fit() is not doing optimizing.)

Logo ExtRESCAL 0.7.1

by nzhiltsov - October 11, 2014, 17:08:01 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 2972 views, 576 downloads, 1 subscription

About: Scalable tensor factorization

Changes:
  • Grealy improve the memory consumption for all scripts after refactoring to using csr_matrix
  • Fix the eigenvalue initialization

Logo JMLR MLPACK 1.0.10

by rcurtin - August 29, 2014, 21:26:18 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 34668 views, 6854 downloads, 6 subscriptions

Rating Whole StarWhole StarWhole StarWhole Star1/2 Star
(based on 1 vote)

About: A scalable, fast C++ machine learning library, with emphasis on usability.

Changes:
  • Bugfix for NeighborSearch regression which caused very slow allknn/allkfn. Speeds are nwo restored to approximately 1.0.8 speeds, with significant improvement for the cover tree (#365).
  • Detect dependencies correctly when ARMA_USE_WRAPPER is not defined (i.e. libarmadillo.so does not exist).
  • Bugfix for compilation under Visual Studio (#366).

Logo RLPy 1.3a

by bobklein2 - August 28, 2014, 14:34:35 CET [ Project Homepage BibTeX Download ] 2009 views, 445 downloads, 1 subscription

About: RLPy is a framework for performing reinforcement learning (RL) experiments in Python. RLPy provides a large library of agent and domain components, and a suite of tools to aid in experiments (parallelization, hyperparameter optimization, code profiling, and plotting).

Changes:
  • Fixed bug where results using same random seed were different with visualization turned on/off
  • Created RLPy package on pypi (Available at https://pypi.python.org/pypi/rlpy)
  • Switched from custom logger class to python default
  • Added unit tests
  • Code readability improvements (formatting, variable names/ordering)
  • Restructured TD Learning heirarchy
  • Updated tutorials

Logo Toeblitz Toolkit for Fast Toeplitz Matrix Operations 1.03

by cunningham - August 13, 2014, 02:21:36 CET [ BibTeX Download ] 2559 views, 660 downloads, 2 subscriptions

About: Toeblitz is a MATLAB/Octave package for operations on positive definite Toeplitz matrices. It can solve Toeplitz systems Tx = b in O(n*log(n)) time and O(n) memory, compute matrix inverses T^(-1) (with free log determinant) in O(n^2) time and memory, compute log determinants (without inverses) in O(n^2) time and O(n) memory, and compute traces of products A*T for any matrix A, in minimal O(n^2) time and memory.

Changes:

Adding a write-up in written/toeblitz.pdf describing the package.


Logo JMLR GPstuff 4.5

by avehtari - July 22, 2014, 14:03:11 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 15490 views, 3730 downloads, 2 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarWhole Star
(based on 1 vote)

About: The GPstuff toolbox is a versatile collection of Gaussian process models and computational tools required for inference. The tools include, among others, various inference methods, sparse approximations and model assessment methods.

Changes:

2014-07-22 Version 4.5

New features

  • Input dependent noise and signal variance.

    • Tolvanen, V., Jylänki, P. and Vehtari, A. (2014). Expectation Propagation for Nonstationary Heteroscedastic Gaussian Process Regression. In Proceedings of IEEE International Workshop on Machine Learning for Signal Processing, accepted for publication. Preprint http://arxiv.org/abs/1404.5443
  • Sparse stochastic variational inference model.

    • Hensman, J., Fusi, N. and Lawrence, N. D. (2013). Gaussian processes for big data. arXiv preprint http://arxiv.org/abs/1309.6835.
  • Option 'autoscale' in the gp_rnd.m to get split normal approximated samples from the posterior predictive distribution of the latent variable.

    • Geweke, J. (1989). Bayesian Inference in Econometric Models Using Monte Carlo Integration. Econometrica, 57(6):1317-1339.

    • Villani, M. and Larsson, R. (2006). The Multivariate Split Normal Distribution and Asymmetric Principal Components Analysis. Communications in Statistics - Theory and Methods, 35(6):1123-1140.

Improvements

  • New unit test environment using the Matlab built-in test framework (the old Xunit package is still also supported).
  • Precomputed demo results (including the figures) are now available in the folder tests/realValues.
  • New demos demonstrating new features etc.
    • demo_epinf, demonstrating the input dependent noise and signal variance model
    • demo_svi_regression, demo_svi_classification
    • demo_modelcomparison2, demo_survival_comparison

Several minor bugfixes


Logo Crino 1.0.0

by jlerouge - July 16, 2014, 17:54:55 CET [ Project Homepage BibTeX Download ] 708 views, 183 downloads, 2 subscriptions

About: Crino: a neural-network library based on Theano

Changes:

1.0.0 (7 july 2014) : - Initial release of crino - Implements a torch-like library to build artificial neural networks (ANN) - Provides standard implementations for : * auto-encoders * multi-layer perceptrons (MLP) * deep neural networks (DNN) * input output deep architecture (IODA) - Provides a batch-gradient backpropagation algorithm, with adaptative learning rate


Logo APCluster 1.3.5

by UBod - June 30, 2014, 08:32:01 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 17354 views, 3137 downloads, 2 subscriptions

Rating Whole StarWhole StarWhole StarWhole Star1/2 Star
(based on 2 votes)

About: The apcluster package implements Frey's and Dueck's Affinity Propagation clustering in R. The package further provides leveraged affinity propagation, exemplar-based agglomerative clustering, and various tools for visual analysis of clustering results.

Changes:
  • memory access fixes in C++ code called from apclusterL()
  • minor updates of vignette

Logo Kernel Adaptive Filtering Toolbox 1.4

by steven2358 - May 26, 2014, 18:24:23 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 3510 views, 566 downloads, 1 subscription

About: A Matlab benchmarking toolbox for online and adaptive regression with kernels.

Changes:
  • Improvements and demo script for profiler
  • Initial version of documentation
  • Several new algorithms

About: RLLib is a lightweight C++ template library that implements incremental, standard, and gradient temporal-difference learning algorithms in Reinforcement Learning. It is an optimized library for robotic applications and embedded devices that operates under fast duty cycles (e.g., < 30 ms). RLLib has been tested and evaluated on RoboCup 3D soccer simulation agents, physical NAO V4 humanoid robots, and Tiva C series launchpad microcontrollers to predict, control, learn behaviors, and represent learnable knowledge. The implementation of the RLLib library is inspired by the RLPark API, which is a library of temporal-difference learning algorithms written in Java.

Changes:

Current release version is v2.0.


Logo Chordalysis 1.0

by fpetitjean - March 24, 2014, 01:22:06 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 985 views, 229 downloads, 1 subscription

About: Log-linear analysis for high-dimensional data

Changes:

Initial Announcement on mloss.org.


Logo MOSIS 0.55

by claasahl - March 9, 2014, 17:35:40 CET [ BibTeX Download ] 2993 views, 944 downloads, 2 subscriptions

About: MOSIS is a modularized framework for signal processing, stream analysis, machine learning and stream mining applications.

Changes:
  • Move "flow"-related classes into package "de.claas.mosis.flow" (e.g. Node and Link).
  • Refined and improved "flow"-related tests (e.g. Iterator and Node tests).
  • Refactored tests for data formats (e.g. PlainText and JSON tests).
  • Added visitor design pattern for graph-based functions (e.g. initialization and processing).
  • Documented parameters of Processor implementations.

Logo The Choquet Kernel 1.00

by AliFall - February 11, 2014, 16:21:15 CET [ BibTeX BibTeX for corresponding Paper Download ] 897 views, 238 downloads, 1 subscription

About: The package computes the optimal parameters for the Choquet kernel

Changes:

Initial Announcement on mloss.org.


Logo Ordinal Choquistic Regression 1.00

by AliFall - January 30, 2014, 15:42:34 CET [ BibTeX BibTeX for corresponding Paper Download ] 1073 views, 252 downloads, 1 subscription

About: "Ordinal Choquistic Regression" model using the maximum likelihood

Changes:

Initial Announcement on mloss.org.


Logo ELKI 0.6.0

by erich - January 10, 2014, 18:32:28 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 10798 views, 1936 downloads, 3 subscriptions

About: ELKI is a framework for implementing data-mining algorithms with support for index structures, that includes a wide variety of clustering and outlier detection methods.

Changes:

Additions and Improvements from ELKI 0.5.5:

Algorithms

Clustering:

  • Hierarchical Clustering - the slower naive variants were added, and the code was refactored
  • Partition extraction from hierarchical clusterings - different linkage strategies (e.g. Ward)
  • Canopy pre-Clustering
  • Naive Mean-Shift Clustering
  • Affinity propagation clustering (both with distances and similarities / kernel functions)
  • K-means variations: Best-of-multiple-runs, bisecting k-means
  • New k-means initialization: farthest points, sample initialization
  • Cheng and Church Biclustering
  • P3C Subspace Clustering
  • One-dimensional clustering algorithm based on kernel density estimation

Outlier detection

  • COP - correlation outlier probabilities
  • LDF - a kernel density based LOF variant
  • Simplified LOF - a simpler version of LOF (not using reachability distance)
  • Simple Kernel Density LOF - a simple LOF using kernel density (more consistent than LDF)
  • Simple outlier ensemble algorithm
  • PINN - projection indexed nearest neighbors, via projected indexes.
  • ODIN - kNN graph based outlier detection
  • DWOF - Dynamic-Window Outlier Factor (contributed by Omar Yousry)
  • ABOD refactored, into ABOD, FastABOD and LBABOD

Distances

  • Geodetic distances now support different world models (WGS84 etc.) and are subtantially faster.
  • Levenshtein distances for processing strings, e.g. for analyzing phonemes (contributed code, see "Word segmentation through cross-lingual word-to-phoneme alignment", SLT2013, Stahlberg et al.)
  • Bray-Curtis, Clark, Kulczynski1 and Lorentzian distances with R-tree indexing support
  • Histogram matching distances
  • Probabilistic divergence distances (Jeffrey, Jensen-Shannon, Chi2, Kullback-Leibler)
  • Kulczynski2 similarity
  • Kernel similarity code has been refactored, and additional kernel functions have been added

Database Layer and Data Types

Projection layer * Parser for simple textual data (for use with Levenshtein distance) Various random projection families (including Feature Bagging, Achlioptas, and p-stable) Latitude+Longitude to ECEF Sparse vector improvements and bug fixes New filter: remove NaN values and missing values New filter: add histogram-based jitter New filter: normalize using statistical distributions New filter: robust standardization using Median and MAD New filter: Linear discriminant analysis (LDA)

Index Layer

  • Another speed up in R-trees
  • Refactoring of M- and R-trees: Support for different strategies in M-tree New strategies for M-tree splits Speedups in M-tree
  • New index structure: in-memory k-d-tree
  • New index structure: in-memory Locality Sensitive Hashing (LSH)
  • New index structure: approximate projected indexes, such as PINN
  • Index support for geodetic data - (Details: Geodetic Distance Queries on R-Trees for Indexing Geographic Data, SSTD13)
  • Sampled k nearest neighbors: reference KDD13 "Subsampling for Efficient and Effective Unsupervised Outlier Detection Ensembles"
  • Cached (precomputed) k-nearest neighbors to share across multiple runs
  • Benchmarking "algorithms" for indexes

Mathematics and Statistics

  • Many new distributions have been added, now 28 different distributions are supported
  • Additional estimation methods (using advanced statistics such as L-Moments), now 44 estimators are available
  • Trimming and Winsorizing
  • Automatic best-fit distribution estimation
  • Preprocessor using these distributions for rescaling data sets
  • API changes related to the new distributions support
  • More kernel density functions
  • RANSAC covariance matrix builder (unfortunately rather slow)

Visualization

  • 3D projected coordinates (Details: Interactive Data Mining with 3D-Parallel-Coordinate-Trees, SIGMOD2013)
  • Convex hulls now also include nested hierarchical clusters

Other

  • Parser speedups
  • Sparse vector bug fixes and improvements
  • Various bug fixes
  • PCA, MDS and LDA filters
  • Text output was slightly improved (but still needs to be redesigned from scratch - please contribute!)
  • Refactoring of hierarchy classes
  • New heap classes and infrastructure enhancements
  • Classes can have aliases, e.g. "l2" for euclidean distance.
  • Some error messages were made more informative.
  • Benchmarking classes, also for approximate nearest neighbor search.

Logo minFunc 2012

by markSchmidt - December 18, 2013, 01:07:07 CET [ Project Homepage BibTeX Download ] 1159 views, 262 downloads, 1 subscription

About: minFunc is a Matlab function for unconstrained optimization of differentiable real-valued multivariate functions using line-search methods. It uses an interface very similar to the Matlab Optimization Toolbox function fminunc, and can be called as a replacement for this function. On many problems, minFunc requires fewer function evaluations to converge than fminunc (or minimize.m). Further it can optimize problems with a much larger number of variables (fminunc is restricted to several thousand variables), and uses a line search that is robust to several common function pathologies.

Changes:

Initial Announcement on mloss.org.


Logo LIBOL 0.3.0

by stevenhoi - December 12, 2013, 15:26:14 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 8172 views, 2583 downloads, 2 subscriptions

About: LIBOL is an open-source library with a family of state-of-the-art online learning algorithms for machine learning and big data analytics research. The current version supports 16 online algorithms for binary classification and 13 online algorithms for multiclass classification.

Changes:

In contrast to our last version (V0.2.3), the new version (V0.3.0) has made some important changes as follows:

• Add a template and guide for adding new algorithms;

• Improve parameter settings and make documentation clear;

• Improve documentation on data formats and key functions;

• Amend the "OGD" function to use different loss types;

• Fixed some name inconsistency and other minor bugs.


Showing Items 1-20 of 77 on page 1 of 4: 1 2 3 4 Next