Projects running under macosx.
Showing Items 1-20 of 79 on page 1 of 4: 1 2 3 4 Next

Logo hca 0.63

by wbuntine - April 26, 2016, 15:35:03 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 15787 views, 2540 downloads, 4 subscriptions

About: Multi-core non-parametric and bursty topic models (HDP-LDA, DCMLDA, and other variants of LDA) implemented in C using efficient Gibbs sampling, with hyperparameter sampling and other flexible controls.

Changes:

Corrected the new normalised Gamma model for topics so it works with multicore. Improvements to documentation. Added an asymptotic version of the generalised Stirling numbers so it longer fails when they run out of bounds on bigger data.


Logo WEKA 3.9.0

by mhall - April 15, 2016, 06:35:30 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 57563 views, 8598 downloads, 5 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarEmpty Star
(based on 6 votes)

About: The Weka workbench contains a collection of visualization tools and algorithms for data analysis and predictive modelling, together with graphical user interfaces for easy access to this [...]

Changes:

In core weka:

  • JAMA-based linear algebra routines replaced with MTJ. Faster operation with the option to use native libraries for even more speed
  • General efficiency improvements in core, filters and some classifiers
  • GaussianProcesses now handles instance weights
  • New Knowledge Flow implementation. Engine completely rewritten from scratch with a simplified API
  • New Workbench GUI
  • GUI package manager now has a search facility
  • FixedDictionaryStringToWordVector filter allows the use of an external dictionary for vectorization. DictionarySaver converter can be used to create a dictionary file

In packages:

  • Packages that were using JAMA are now using MTJ
  • New netlibNativeOSX, netlibNativeWindows and netlibNativeLinux packages providing native reference implementations (and system-optimized implementation in the case of OSX) of BLAS, LAPACK and ARPACK linear algebra
  • New elasticNet package, courtesy of Nikhil Kinshore
  • New niftiLoader package for loading a directory with MIR data in NIfTI format into Weka
  • New percentageErrorMetrics package - provides plugin evaluation metrics for root mean square percentage error and mean absolute percentage error
  • New iterativeAbsoluteErrorRegression package - provides a meta learner that fits a regression model to minimize absolute error
  • New largeScaleKernelLearning package - contains filters for large-scale kernel-based learning
  • discriminantAnalysis package now contains an implementation for LDA and QDA
  • New Knowledge Flow component implementations in various packages
  • newKnowledgeFlowStepExamples package - contains code examples for new Knowledge Flow API discussion in the Weka Manual
  • RPlugin updated to latest version of MLR
  • scatterPlot3D and associationRulesVisualizer packages updated with latest Java 3D libraries
  • Support for pluggable activation functions in the multiLayerPerceptrons package

Logo Theano 0.8.1

by jaberg - April 1, 2016, 19:22:01 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 24126 views, 4206 downloads, 3 subscriptions

About: A Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. Dynamically generates CPU and GPU modules for good performance. Deep Learning Tutorials illustrate deep learning with Theano.

Changes:

Theano 0.8.1 (29th of March, 2016)

* Fix compilation on Mac with CLT 7.3

Theano 0.8 (21th of March, 2016)

We recommend to everyone to upgrade to this version.

Highlights:

* Python 2 and 3 support with the same code base
* Faster optimization
* Integration of CuDNN for better GPU performance
* Many Scan improvements (execution speed up, ...)
* optimizer=fast_compile moves computation to the GPU.
* Better convolution on CPU and GPU. (CorrMM, cudnn, 3d conv, more parameter)
* Interactive visualization of graphs with d3viz
* cnmem (better memory management on GPU)
* BreakpointOp
* Multi-GPU for data parallism via Platoon (https://github.com/mila-udem/platoon/)
* More pooling parameter supported
* Bilinear interpolation of images
* New GPU back-end:

    * Float16 new back-end (need cuda 7.5)
    * Multi dtypes
    * Multi-GPU support in the same process

Logo FEAST 1.1.4

by apocock - March 12, 2016, 18:35:08 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 32952 views, 6382 downloads, 3 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarWhole Star
(based on 2 votes)

About: FEAST provides implementations of common mutual information based filter feature selection algorithms (mim, mifs, mrmr, cmim, icap, jmi, disr, fcbf, etc), and an implementation of RELIEF. Written for C/C++ & Matlab.

Changes:
  • Fixed an issue where zero MI values would cause it to segfault.
  • Fixes to documentation and comments.
  • Updated internal version of MIToolbox.

Logo JMLR Jstacs 2.2

by keili - February 17, 2016, 11:57:56 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 21781 views, 5098 downloads, 3 subscriptions

About: A Java framework for statistical analysis and classification of biological sequences

Changes:

New classes and packages:

  • CorreationCoefficient: PerformanceMeasure
  • de.jstacs.clustering: package with classes for hierarchical clustering
  • DeBruijnGraphSequenceGenerator and DeBruijnSequenceGenerator for generating De Buijn sequences
  • CyclicSequenceAdaptor for representing cyclic sequences
  • PlotGeneratorResult for representing results that plot images to a Graphics2D object
  • TextResult for results that may be stored as text files
  • package de.jstacs.results.savers for generic classes that store results to disk
  • LimitedSparseLocalInhomogeneousMixtureDiffSM_higherOrder for sparse local inhomogeneous mixture (Slim) models
  • PFMWrapperTrainSM for representing position frequency matrices and position weight matrices from databases
  • package de.jstacs.tools with classes for generic Jstacs tools that may be used in different user interfaces (command line, Galaxy, JavaFX)
  • Compression for ZIP compression of Strings
  • package de.jstacs.utils.graphics with generic GraphicsAdaptor using Apache XML commons
  • projects: Dimont, GeMoMa, Slim, TALEN, motif comparison

New features and improvements:

  • Major restructuring of Alignment for better efficiency
  • Alignment Costs and StringAlignment now Storable
  • New constructor of DataSet allowing a specified percentage of sequences to mismatch the given alphabet
  • BioJavaAdapter ported to BioJava 1.9
  • XMLParser now also allows for storing Sequences
  • New method for parsing HMMer profile HMMs in HMMFactory
  • Several minor improvements and bugfixes in many classes
  • Improvements of documentation of several classes

Logo MIToolbox 2.1.2

by apocock - January 10, 2016, 22:19:30 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 24979 views, 4399 downloads, 2 subscriptions

About: A mutual information library for C and Mex bindings for MATLAB. Aimed at feature selection, and provides simple methods to calculate mutual information, conditional mutual information, entropy, conditional entropy, Renyi entropy/mutual information, and weighted variants of Shannon entropies/mutual informations. Works with discrete distributions, and expects column vectors of features.

Changes:

Relicensed as BSD. Added checks to catch MATLAB inputs that aren't doubles.


Logo JMLR dlib ml 18.18

by davis685 - October 29, 2015, 01:48:44 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 138867 views, 22732 downloads, 4 subscriptions

About: This project is a C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real world problems.

Changes:

This release has focused on build system improvements, both for the Python API and C++ builds using CMake. This includes adding a setup.py script for installing the dlib Python API as well as a make install target for installing a C++ shared library for non-Python use.


Logo YCML 0.2.2

by yconst - August 24, 2015, 20:28:45 CET [ Project Homepage BibTeX Download ] 1338 views, 295 downloads, 3 subscriptions

About: A Machine Learning framework for Objective-C and Swift (OS X / iOS)

Changes:

Initial Announcement on mloss.org.


Logo JMLR libDAI 0.3.2

by jorism - July 17, 2015, 15:59:55 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 48737 views, 9055 downloads, 4 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarWhole Star
(based on 1 vote)

About: libDAI provides free & open source implementations of various (approximate) inference methods for graphical models with discrete variables, including Bayesian networks and Markov Random Fields.

Changes:

Release 0.3.2 fixes various bugs and adds GLC (Generalized Loop Corrections) written by Siamak Ravanbakhsh.


Logo FsAlg 0.5.4

by gbaydin - April 25, 2015, 02:11:03 CET [ Project Homepage BibTeX Download ] 1475 views, 420 downloads, 1 subscription

About: FsAlg is a linear algebra library that supports generic types.

Changes:

Initial Announcement on mloss.org.


Logo CN24 Convolutional Neural Networks for Semantic Segmentation 1.0

by erik - February 23, 2015, 09:02:06 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 2372 views, 478 downloads, 1 subscription

About: CN24 is a complete semantic segmentation framework using fully convolutional networks.

Changes:

Initial Announcement on mloss.org.


Logo JMLR SHOGUN 4.0.0

by sonne - February 5, 2015, 09:09:37 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 109519 views, 15582 downloads, 6 subscriptions

Rating Whole StarWhole StarWhole StarEmpty StarEmpty Star
(based on 6 votes)

About: The SHOGUN machine learning toolbox's focus is on large scale learning methods with focus on Support Vector Machines (SVM), providing interfaces to python, octave, matlab, r and the command line.

Changes:

This release features the work of our 8 GSoC 2014 students [student; mentors]:

  • OpenCV Integration and Computer Vision Applications [Abhijeet Kislay; Kevin Hughes]
  • Large-Scale Multi-Label Classification [Abinash Panda; Thoralf Klein]
  • Large-scale structured prediction with approximate inference [Jiaolong Xu; Shell Hu]
  • Essential Deep Learning Modules [Khaled Nasr; Sergey Lisitsyn, Theofanis Karaletsos]
  • Fundamental Machine Learning: decision trees, kernel density estimation [Parijat Mazumdar ; Fernando Iglesias]
  • Shogun Missionary & Shogun in Education [Saurabh Mahindre; Heiko Strathmann]
  • Testing and Measuring Variable Interactions With Kernels [Soumyajit De; Dino Sejdinovic, Heiko Strathmann]
  • Variational Learning for Gaussian Processes [Wu Lin; Heiko Strathmann, Emtiyaz Khan]

It also contains several cleanups and bugfixes:

Features

  • New Shogun project description [Heiko Strathmann]
  • ID3 algorithm for decision tree learning [Parijat Mazumdar]
  • New modes for PCA matrix factorizations: SVD & EVD, in-place or reallocating [Parijat Mazumdar]
  • Add Neural Networks with linear, logistic and softmax neurons [Khaled Nasr]
  • Add kernel multiclass strategy examples in multiclass notebook [Saurabh Mahindre]
  • Add decision trees notebook containing examples for ID3 algorithm [Parijat Mazumdar]
  • Add sudoku recognizer ipython notebook [Alejandro Hernandez]
  • Add in-place subsets on features, labels, and custom kernels [Heiko Strathmann]
  • Add Principal Component Analysis notebook [Abhijeet Kislay]
  • Add Multiple Kernel Learning notebook [Saurabh Mahindre]
  • Add Multi-Label classes to enable Multi-Label classification [Thoralf Klein]
  • Add rectified linear neurons, dropout and max-norm regularization to neural networks [Khaled Nasr]
  • Add C4.5 algorithm for multiclass classification using decision trees [Parijat Mazumdar]
  • Add support for arbitrary acyclic graph-structured neural networks [Khaled Nasr]
  • Add CART algorithm for classification and regression using decision trees [Parijat Mazumdar]
  • Add CHAID algorithm for multiclass classification and regression using decision trees [Parijat Mazumdar]
  • Add Convolutional Neural Networks [Khaled Nasr]
  • Add Random Forests algorithm for ensemble learning using CART [Parijat Mazumdar]
  • Add Restricted Botlzmann Machines [Khaled Nasr]
  • Add Stochastic Gradient Boosting algorithm for ensemble learning [Parijat Mazumdar]
  • Add Deep contractive and denoising autoencoders [Khaled Nasr]
  • Add Deep belief networks [Khaled Nasr]

Bugfixes

  • Fix reference counting bugs in CList when reference counting is on [Heiko Strathmann, Thoralf Klein, lambday]
  • Fix memory problem in PCA::apply_to_feature_matrix [Parijat Mazumdar]
  • Fix crash in LeastAngleRegression for the case D greater than N [Parijat Mazumdar]
  • Fix memory violations in bundle method solvers [Thoralf Klein]
  • Fix fail in library_mldatahdf5.cpp example when http://mldata.org is not working properly [Parijat Mazumdar]
  • Fix memory leaks in Vowpal Wabbit, LibSVMFile and KernelPCA [Thoralf Klein]
  • Fix memory and control flow issues discovered by Coverity [Thoralf Klein]
  • Fix R modular interface SWIG typemap (Requires SWIG >= 2.0.5) [Matt Huska]

Cleanup and API Changes

  • PCA now depends on Eigen3 instead of LAPACK [Parijat Mazumdar]
  • Removing redundant and fixing implicit imports [Thoralf Klein]
  • Hide many methods from SWIG, reducing compile memory by 500MiB [Heiko Strathmann, Fernando Iglesias, Thoralf Klein]

Logo LogRegCrowds, Logistic Regression from Crowds 1.0

by fmpr - October 30, 2014, 19:10:23 CET [ Project Homepage BibTeX Download ] 1761 views, 528 downloads, 2 subscriptions

About: LogReg-Crowds is a collection of Julia implementations of various approaches for learning a logistic regression model multiple annotators and crowds, namely the works of Raykar et al. (2010), Rodrigues et al. (2013) and Dawid and Skene (1979).

Changes:

Initial Announcement on mloss.org. Added GitHub page.


About: This library implements the Optimum-Path Forest classifier for unsupervised and supervised learning.

Changes:

Initial Announcement on mloss.org.


Logo JMLR Waffles 2014-07-05

by mgashler - July 20, 2014, 04:53:54 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 36097 views, 9533 downloads, 2 subscriptions

About: Script-friendly command-line tools for machine learning and data mining tasks. (The command-line tools wrap functionality from a public domain C++ class library.)

Changes:

Added support for CUDA GPU-parallelized neural network layers, and several other new features. Full list of changes at http://waffles.sourceforge.net/docs/changelog.html


Logo JMLR MSVMpack 1.5

by lauerfab - July 3, 2014, 16:02:49 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 20766 views, 6312 downloads, 2 subscriptions

About: MSVMpack is a Multi-class Support Vector Machine (M-SVM) package. It is dedicated to SVMs which can handle more than two classes without relying on decomposition methods and implements the four M-SVM models from the literature: Weston and Watkins M-SVM, Crammer and Singer M-SVM, Lee, Lin and Wahba M-SVM, and the M-SVM2 of Guermeur and Monfrini.

Changes:
  • Windows binaries are now included (by Emmanuel Didiot)
  • MSVMpack can now be compiled on Windows (by Emmanuel Didiot)
  • Fixed polynomial kernel
  • Minor bug fixes

Logo OpenOpt 0.54

by Dmitrey - June 15, 2014, 14:50:37 CET [ Project Homepage BibTeX Download ] 60843 views, 12720 downloads, 3 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarEmpty Star
(based on 2 votes)

About: Universal Python-written numerical optimization toolbox. Problems: NLP, LP, QP, NSP, MILP, LSP, LLSP, MMP, GLP, SLE, MOP etc; general logical constraints, categorical variables, automatic differentiation, stochastic programming, interval analysis, many other goodies

Changes:

http://openopt.org/Changelog


Logo JMLR Tapkee 1.0

by blackburn - April 10, 2014, 02:45:58 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 11409 views, 3305 downloads, 1 subscription

About: Tapkee is an efficient and flexible C++ template library for dimensionality reduction.

Changes:

Initial Announcement on mloss.org.


Logo JMLR MOA Massive Online Analysis Nov-13

by abifet - April 4, 2014, 03:50:20 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 16944 views, 6172 downloads, 1 subscription

About: Massive Online Analysis (MOA) is a real time analytic tool for data streams. It is a software environment for implementing algorithms and running experiments for online learning from evolving data streams. MOA includes a collection of offline and online methods as well as tools for evaluation. In particular, it implements boosting, bagging, and Hoeffding Trees, all with and without Naive Bayes classifiers at the leaves. MOA supports bi-directional interaction with WEKA, the Waikato Environment for Knowledge Analysis, and it is released under the GNU GPL license.

Changes:

New version November 2013


Logo JMLR MultiBoost 1.2.02

by busarobi - March 31, 2014, 16:13:04 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 36561 views, 6148 downloads, 1 subscription

About: MultiBoost is a multi-purpose boosting package implemented in C++. It is based on the multi-class/multi-task AdaBoost.MH algorithm [Schapire-Singer, 1999]. Basic base learners (stumps, trees, products, Haar filters for image processing) can be easily complemented by new data representations and the corresponding base learners, without interfering with the main boosting engine.

Changes:

Major changes :

  • The “early stopping” feature can now based on any metric output with the --outputinfo command line argument.

  • Early stopping now works with --slowresume command line argument.

Minor fixes:

  • More informative output when testing.

  • Various compilation glitch with recent clang (OsX/Linux).


Showing Items 1-20 of 79 on page 1 of 4: 1 2 3 4 Next