9 projects found that use the bsd 3 clause license license.


Logo JMLR MLPACK 2.0.0

by rcurtin - January 11, 2016, 17:24:35 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 52892 views, 9907 downloads, 6 subscriptions

Rating Whole StarWhole StarWhole StarWhole Star1/2 Star
(based on 1 vote)

About: A scalable, fast C++ machine learning library, with emphasis on usability.

Changes:
  • Removed overclustering support from k-means because it is not well-tested, may be buggy, and is (I think) unused. If this was support you were using, open a bug or get in touch with us; it would not be hard for us to reimplement it.
  • Refactored KMeans to allow different types of Lloyd iterations.
  • Added implementations of k-means: Elkan's algorithm, Hamerly's algorithm, Pelleg-Moore's algorithm, and the DTNN (dual-tree nearest neighbor) algorithm.
  • Significant acceleration of LRSDP via the use of accu(a % b) instead of trace(a * b).
  • Added MatrixCompletion class (matrix_completion), which performs nuclear norm minimization to fill unknown values of an input matrix.
  • No more dependence on Boost.Random; now we use C++11 STL random support.
  • Add softmax regression, contributed by Siddharth Agrawal and QiaoAn Chen.
  • Changed NeighborSearch, RangeSearch, FastMKS, LSH, and RASearch API; these classes now take the query sets in the Search() method, instead of in the constructor.
  • Use OpenMP, if available. For now OpenMP support is only available in the DET training code.
  • Add support for predicting new test point values to LARS and the command-line 'lars' program.
  • Add serialization support for Perceptron and LogisticRegression.
  • Refactor SoftmaxRegression to predict into an arma::Row object, and add a softmax_regression program.
  • Refactor LSH to allow loading and saving of models.
  • ToString() is removed entirely (#487).
  • Add --input_model_file and --output_model_file options to appropriate machine learning algorithms.
  • Rename all executables to start with an "mlpack" prefix (#229).

See also https://mailman.cc.gatech.edu/pipermail/mlpack/2015-December/000706.html for more information.


Logo MIToolbox 2.1.2

by apocock - January 10, 2016, 22:19:30 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 22326 views, 4002 downloads, 2 subscriptions

About: A mutual information library for C and Mex bindings for MATLAB. Aimed at feature selection, and provides simple methods to calculate mutual information, conditional mutual information, entropy, conditional entropy, Renyi entropy/mutual information, and weighted variants of Shannon entropies/mutual informations. Works with discrete distributions, and expects column vectors of features.

Changes:

Relicensed as BSD. Added checks to catch MATLAB inputs that aren't doubles.


Logo Nilearn 0.1.2

by goulagman - April 29, 2015, 16:16:25 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 1874 views, 481 downloads, 3 subscriptions

About: Nilearn is a Python module for fast and easy statistical learning on NeuroImaging data. It leverages the scikit-learn Python toolbox for multivariate statistics with applications such as predictive modelling, classification, decoding, or connectivity analysis.

Changes:

Initial Announcement on mloss.org.


Logo Theano 0.7

by jaberg - March 27, 2015, 16:40:18 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 21011 views, 3771 downloads, 3 subscriptions

About: A Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. Dynamically generates CPU and GPU modules for good performance. Deep Learning Tutorials illustrate deep learning with Theano.

Changes:

Theano 0.7 (26th of March, 2015)

We recommend to everyone to upgrade to this version.

Highlights:

* Integration of CuDNN for 2D convolutions and pooling on supported GPUs
* Too many optimizations and new features to count
* Various fixes and improvements to scan
* Better support for GPU on Windows
* On Mac OS X, clang is used by default
* Many crash fixes
* Some bug fixes as well

Logo Loom 0.2.10

by fritzo - March 19, 2015, 19:22:03 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 1549 views, 356 downloads, 2 subscriptions

About: A streaming inference and query engine for the Cross-Categorization model of tabular data.

Changes:

Initial Announcement on mloss.org.


Logo CN24 Convolutional Neural Networks for Semantic Segmentation 1.0

by erik - February 23, 2015, 09:02:06 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 1946 views, 395 downloads, 1 subscription

About: CN24 is a complete semantic segmentation framework using fully convolutional networks.

Changes:

Initial Announcement on mloss.org.


Logo JMLR BudgetedSVM v1.1

by nemanja - February 12, 2014, 20:53:45 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 3298 views, 674 downloads, 1 subscription

About: BudgetedSVM is an open-source C++ toolbox for scalable non-linear classification. The toolbox can be seen as a missing link between LibLinear and LibSVM, combining the efficiency of linear with the accuracy of kernel SVM. We provide an Application Programming Interface for efficient training and testing of non-linear classifiers, supported by data structures designed for handling data which cannot fit in memory. We also provide command-line and Matlab interfaces, providing users with an efficient, easy-to-use tool for large-scale non-linear classification.

Changes:

Changed license from LGPL v3 to Modified BSD.


Logo Differential Dependency Network cabig cytoscape plugin 1.0

by cbil - October 27, 2013, 17:31:58 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 2566 views, 614 downloads, 1 subscription

About: DDN learns and visualize differential dependency networks from condition-specific data.

Changes:

Initial Announcement on mloss.org.


Logo epac 0.10

by jinpengli - October 9, 2013, 14:00:15 CET [ Project Homepage BibTeX Download ] 2484 views, 657 downloads, 1 subscription

About: Embarrassingly Parallel Array Computing: EPAC is a machine learning workflow builder.

Changes:

Initial Announcement on mloss.org.