20 projects found that use python as the programming language.
Showing Items 41-60 of 88 on page 3 of 5: Previous 1 2 3 4 5 Next

Logo MLPY Machine Learning Py 3.5.0

by albanese - March 15, 2012, 09:52:41 CET [ Project Homepage BibTeX Download ] 44953 views, 8590 downloads, 2 subscriptions

Rating Whole StarWhole StarWhole Star1/2 StarEmpty Star
(based on 3 votes)

About: mlpy is a Python module for Machine Learning built on top of NumPy/SciPy and of GSL.

Changes:

New features:

  • LibSvm(): pred_probability() now returns probability estimates; pred_values() added
  • LibLinear(): pred_values() and pred_probability() added
  • dtw_std: squared Euclidean option added
  • LCS for series composed by real values (lcs_real()) added
  • Documentation

Fix:

  • wavelet submodule: cwt(): it returned only real values in morlet and poul
  • IRelief(): remove np. in learn()
  • fix rfe_kfda and rfe_w2 when p=1

Logo JMLR LWPR 1.2.4

by sklanke - February 6, 2012, 19:55:41 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 25430 views, 3160 downloads, 1 subscription

About: Locally Weighted Projection Regression (LWPR) is a recent algorithm that achieves nonlinear function approximation in high dimensional spaces with redundant and irrelevant input dimensions. At its [...]

Changes:

Version 1.2.4

  • Corrected typo in lwpr.c (wrong function name for multi-threaded helper function on Unix systems) Thanks to Jose Luis Rivero

Logo PyMVPA Multivariate Pattern Analysis in Python 2.0.0

by yarikoptic - December 22, 2011, 01:36:32 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 27668 views, 5092 downloads, 1 subscription

Rating Whole StarWhole StarWhole StarWhole StarEmpty Star
(based on 2 votes)

About: Python module to ease pattern classification analyses of large datasets. It provides high-level abstraction of typical processing steps (e.g. data preparation, classification, feature selection, [...]

Changes:
  • 2.0.0 (Mon, Dec 19 2011)

This release aggregates all the changes occurred between official releases in 0.4 series and various snapshot releases (in 0.5 and 0.6 series). To get better overview of high level changes see :ref:release notes for 0.5 <chap_release_notes_0.5> and :ref:0.6 <chap_release_notes_0.6> as well as summaries of release candidates below

  • Fixes (23 BF commits)

    • significance level in the right tail was fixed to include the value tested -- otherwise resulted in optimistic bias (or absurdly high significance in improbable case if all estimates having the same value)
    • compatible with the upcoming IPython 0.12 and renamed sklearn (Fixes #57)
    • do not double-train slave classifiers while assessing sensitivities (Fixes #53)
  • Enhancements (30 ENH + 3 NF commits)

    • resolving voting ties in kNN based on mean distance, and randomly in SMLR
    • :class:kNN's ca.estimates now contains dictionaries with votes for each class
    • consistent zscoring in :class:Hyperalignment
  • 2.0.0~rc5 (Wed, Oct 19 2011)

  • Major: to allow easy co-existence of stable PyMVPA 0.4.x, 0.6 development mvpa module was renamed into mod:mvpa2.

  • Fixes

    • compatible with the new Shogun 1.x series
    • compatible with the new h5py 2.x series
    • mvpa-prep-fmri -- various compatibility fixes and smoke testing
    • deepcopying :class:SummaryStatistics during add
  • Enhancements

    • tutorial uses :mod:mvpa2.tutorial_suite now
    • better suppression of R warnings when needed
    • internal attributes of many classes were exposed as properties
    • more unification of __repr__ for many classes
  • 0.6.0~rc4 (Wed, Jun 14 2011)

  • Fixes

    • Finished transition to :mod:nibabel conventions in plot_lightbox
    • Addressed :mod:matplotlib.hist API change
    • Various adjustments in the tests batteries (:mod:nibabel 1.1.0 compatibility, etc)
  • New functionality

    • Explicit new argument flatten to from_wizard -- default behavior changed if mapper was provided as well
  • Enhancements

    • Elaborated __str__ and __repr__ for some Classifiers and Measures
  • 0.6.0~rc3 (Thu, Apr 12 2011)

  • Fixes

    • Bugfixes regarding the interaction of FlattenMapper and BoxcarMapper that affected event-related analyses.
    • Splitter now handles attribute value None for splitting properly.
    • GNBSearchlight handling of
      roi_ids.
    • More robust detection of mod:scikits.learn and :mod:nipy externals.
  • New functionality

    • Added a Repeater node to yield a dataset multiple times and
      Sifter node to exclude some datasets. Consequently, the "nosplitting" mode of Splitter got removed at the same time.
    • :file:tools/niils -- little tool to list details (dimensionality, scaling, etc) of the files in nibabel-supported formats.
  • Enhancements

    • Numerous documentation fixes.
    • Various improvements and increased flexibility of null distribution estimation of Measures.
    • All attribute are now reported in sorted order when printing a dataset.
    • fmri_dataset now also stores the input image type.
    • Crossvalidation can now take a custom Splitter instance. Moreover, the default splitter of CrossValidation is more robust in terms of number and type of created splits for common usage patterns (i.e. together with partitioners).
    • CrossValidation takes any custom Node as errorfx argument.
    • ConfusionMatrix can now be used as an errorfx in Crossvalidation.
    • LOE(ACC): Linear Order Effect in ACC was added to
      ConfusionMatrix to detect trends in performances across splits.
    • A Node s postproc is now accessible as a property.
    • RepeatedMeasure has a new 'concat_as' argument that allows results to be concatenated along the feature axis. The default behavior, stacking as multiple samples, is unchanged.
    • Searchlight now has the ability to mark the center/seed of an ROI in with a feature attribute in the generated datasets.
    • debug takes args parameter for delayed string comprehensions. It should reduce run-time impact of debug() calls in regular, non -O mode of Python operation.
    • String summaries and representations (provided by __str__ and __repr__) were made more exhaustive and more coherent. Additional properties to access initial constructor arguments were added to variety of classes.
  • Internal changes

    • New debug target STDOUT to allow attaching metrics (e.g. traceback, timestamps) to regular output printed to stdout

    • New set of decorators to help with unittests

    • @nodebug to disable specific debug targets for the duration of the test.

    • @reseed_rng to guarantee consistent random data given initial seeding.

    • @with_tempfile to provide a tempfile name which would get removed upon completion (test success or failure)

    • Dropping daily testing of maint/0.5 branch -- RIP.

    • Collection s were provided with adequate (deep|)copy. And Dataset was refactored to use Collection s copy method.

    • update-* Makefile rules automatically should fast-forward corresponding website-updates branch

    • MVPA_TESTS_VERBOSITY controls also :mod:numpy warnings now.

    • Dataset.__array__ provides original array instead of copy (unless dtype is provided)

Also adapts changes from 0.4.6 and 0.4.7 (see corresponding changelogs).

  • 0.6.0~rc2 (Thu, Mar 3 2011)

  • Various fixes in the mvpa.atlas module.

  • 0.6.0~rc1 (Thu, Feb 24 2011)

  • Many, many, many

  • For an overview of the most drastic changes :ref:see constantly evolving release notes for 0.6 <chap_release_notes_0.6>

  • 0.5.0 (sometime in March 2010)

This is a special release, because it has never seen the general public. A summary of fundamental changes introduced in this development version can be seen in the :ref:release notes <chap_release_notes_0.5>.

Most notably, this version was to first to come with a comprehensive two-day workshop/tutorial.

  • 0.4.7 (Tue, Mar 07 2011) (Total: 12 commits)

A bugfix release

  • Fixed

    • Addressed the issue with input NIfTI files having scl_ fields set: it could result in incorrect analyses and map2nifti-produced NIfTI files. Now input files account for scaling/offset if scl_ fields direct to do so. Moreover upon map2nifti, those fields get reset.
    • :file:doc/examples/searchlight_minimal.py - best error is the minimal one
  • Enhancements

    • :class:~mvpa.clfs.gnb.GNB can now tolerate training datasets with a single label
    • :class:~mvpa.clfs.meta.TreeClassifier can have trailing nodes with no classifier assigned
  • 0.4.6 (Tue, Feb 01 2011) (Total: 20 commits)

A bugfix release

  • Fixed (few BF commits):

    • Compatibility with numpy 1.5.1 (histogram) and scipy 0.8.0 (workaround for a regression in legendre)
    • Compatibility with libsvm 3.0
    • :class:~mvpa.clfs.plr.PLR robustification
  • Enhancements

    • Enforce suppression of numpy warnings while running unittests. Also setting verbosity >= 3 enables all warnings (Python, NumPy, and PyMVPA)
    • :file:doc/examples/nested_cv.py example (adopted from 0.5)
    • Introduced base class :class:~mvpa.clfs.base.LearnerError for classifiers' exceptions (adopted from 0.5)
    • Adjusted example data to live upto nibabel's warranty of NIfTI standard-compliance
    • More robust operation of MC iterations -- skip iterations where classifier experienced difficulties and raise an exception (e.g. due to degenerate data)

Logo GraphLab v1-1908

by dannybickson - November 22, 2011, 12:50:00 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 3565 views, 621 downloads, 1 subscription

About: Multicore/distributed large scale machine learning framework.

Changes:

Update version.


Logo treelearn 1

by iskander - September 21, 2011, 16:12:27 CET [ Project Homepage BibTeX Download ] 1985 views, 455 downloads, 1 subscription

About: A python implementation of Breiman's Random Forests.

Changes:

Initial Announcement on mloss.org.


Logo Maja Machine Learning Framework 1.0

by jhm - September 13, 2011, 15:13:56 CET [ Project Homepage BibTeX Download ] 10961 views, 2231 downloads, 1 subscription

About: The Maja Machine Learning Framework (MMLF) is a general framework for problems in the domain of Reinforcement Learning (RL) written in python. It provides a set of RL related algorithms and a set of benchmark domains. Furthermore it is easily extensible and allows to automate benchmarking of different agents.

Changes:
  • Experiments can now be invoked from the command line
  • Experiments can now be "scripted"
  • MMLF Experimenter contains now basic module for statistical hypothesis testing
  • MMLF Explorer can now visualize the model that has been learned by an agent

About: FLANN is a library for performing fast approximate nearest neighbor searches in high dimensional spaces. It contains a collection of algorithms we found to work best for nearest neighbor search.

Changes:

See project page for changes.


Logo K tree 0.4.2

by cdevries - July 4, 2011, 06:01:59 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 5369 views, 1191 downloads, 1 subscription

About: The K-tree is a scalable approach to clustering inspired by the B+-tree and k-means algorithms.

Changes:

Release of K-tree implementation in Python. This is targeted at a research and rapid prototyping audience.


Logo mldata.org svn-r1070-Apr-2011

by sonne - April 8, 2011, 10:15:49 CET [ Project Homepage BibTeX Download ] 3416 views, 608 downloads, 1 subscription

About: The source code of the mldata.org site - a community portal for machine learning data sets.

Changes:

Initial Announcement on mloss.org.


Logo mldata-utils 0.5.0

by sonne - April 8, 2011, 10:02:44 CET [ Project Homepage BibTeX Download ] 17032 views, 3488 downloads, 1 subscription

About: Tools to convert datasets from various formats to various formats, performance measures and API functions to communicate with mldata.org

Changes:
  • Change task file format, such that data splits can have a variable number items and put into up to 256 categories of training/validation/test/not used/...
  • Various bugfixes.

Logo mloss.org svn-r645-Mar-2011

by sonne - March 23, 2011, 11:09:18 CET [ Project Homepage BibTeX Download ] 13648 views, 1878 downloads, 1 subscription

About: This is the source code of the mloss.org website.

Changes:

Now works with newer django versions and fixes several warnings and minor bugs underneath. The only user visible change is probably that the subscription and bookmark buttons work again.


Logo reserbot alpha 1

by neuromancer - January 31, 2011, 14:27:18 CET [ Project Homepage BibTeX Download ] 3818 views, 1029 downloads, 1 subscription

About: A chatterbot that learns natural languages learning from imitation.

Changes:

Alpha 1 - Codename: Wendell Borton ("Bllluuhhhhh...!!")

Short term memory greatly improved.


Logo scikits.learn 0.6

by fabianp - December 22, 2010, 11:58:30 CET [ Project Homepage BibTeX Download ] 6026 views, 1089 downloads, 1 subscription

Rating Whole StarWhole StarWhole StarWhole Star1/2 Star
(based on 3 votes)

About: Obsolete. Use https://mloss.org/software/view/240/ instead.

Changes:

0.6 release


Logo Epistatic MAP Imputation 1.1

by colm - November 25, 2010, 21:01:10 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 2343 views, 576 downloads, 1 subscription

About: Epistatic miniarray profiles (E-MAPs) are a high-throughput approach capable of quantifying aggravating or alleviating genetic interactions between gene pairs. The datasets resulting from E-MAP experiments typically take the form of a symmetric pairwise matrix of interaction scores. These datasets have a significant number of missing values - up to 35% - that can reduce the effectiveness of some data analysis techniques and prevent the use of others. This project contains nearest neighbor based tools for the imputation and prediction of these missing values. The code is implemented in Python and uses a nearest neighbor based approach. Two variants are used - a simple weighted nearest neighbors, and a local least squares based regression.

Changes:

Initial Announcement on mloss.org.


Logo Pyriel 1.5

by tfawcett - October 27, 2010, 09:12:53 CET [ BibTeX BibTeX for corresponding Paper Download ] 9963 views, 2102 downloads, 1 subscription

About: Pyriel is a Python system for learning classification rules from data. Unlike other rule learning systems, it is designed to learn rule lists that maximize the area under the ROC curve (AUC) instead of accuracy. Pyriel is mostly an experimental research tool, but it's robust and fast enough to be used for lightweight industrial data mining.

Changes:

1.5 Changed CF (confidence factor) to do LaPlace smoothing of estimates. New flag "--score-for-class C" causes scores to be computed relative to a given (positive) class. For two-class problems. Fixed bug in example sampling code (--sample n) Fixed bug keeping old-style example formats (terminated by dot) from working. More code restructuring.


Logo BCPy2000 17374

by jez - July 8, 2010, 22:11:24 CET [ Project Homepage BibTeX Download ] 12826 views, 2352 downloads, 1 subscription

About: BCPy2000 provides a platform for rapid, flexible development of experimental Brain-Computer Interface systems based on the BCI2000.org project. From the developer's point of view, the implementation [...]

Changes:

Bugfixes and tuneups, and an expanded set of (some more-, some less-documented, optional tools)


Logo asp 0.3

by sonne - May 7, 2010, 10:25:39 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 6882 views, 1359 downloads, 1 subscription

About: Accurate splice site predictor for a variety of genomes.

Changes:

Asp now supports three formats:

-g fname for gff format

-s fname for spf format

-b dir for a binary format compatible with mGene.

And a new switch

-t which switches on a sigmoid-based transformation of the svm scores to get scores between 0 and 1.


Logo yaplf 0.7

by malchiod - April 22, 2010, 11:34:07 CET [ Project Homepage BibTeX Download ] 2974 views, 724 downloads, 1 subscription

About: yaplf (Yet Another Python Learning Framework) is an extensible machine learning framework written in python

Changes:

Initial Announcement on mloss.org.


Logo JMLR PyBrain 0.3

by bayerj - March 3, 2010, 15:00:08 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 14382 views, 1586 downloads, 2 subscriptions

About: PyBrain is a versatile machine learning library for Python. Its goal is to provide flexible, easy-to-use yet still powerful algorithms for machine learning tasks, including a variety of predefined [...]

Changes:
  • more documentation, including new tutorials
  • new and updated example scripts
  • major restructuring of the reinforcement learning part
  • homogeneous interface for optimization algorithms
  • fast networks (arac) are now in an independent package
  • new algorithms, network structures, tools...

Logo LIBSVM 2.9

by cjlin - February 27, 2010, 01:09:23 CET [ Project Homepage BibTeX Download ] 10020 views, 2012 downloads, 1 subscription

Rating Whole StarWhole StarWhole StarWhole Star1/2 Star
(based on 7 votes)

About: LIBSVM is an integrated software for support vector classification, (C-SVC, nu-SVC ), regression (epsilon-SVR, nu-SVR) and distribution estimation (one-class SVM). It supports multi-class [...]

Changes:

Initial Announcement on mloss.org.


Showing Items 41-60 of 88 on page 3 of 5: Previous 1 2 3 4 5 Next