20 projects found that use python as the programming language.
Showing Items 21-40 of 116 on page 2 of 6: Previous 1 2 3 4 5 6 Next

Logo BayesPy 0.4.1

by jluttine - November 2, 2015, 13:40:09 CET [ Project Homepage BibTeX Download ] 16388 views, 3627 downloads, 3 subscriptions

About: Variational Bayesian inference tools for Python

Changes:
  • Define extra dependencies needed to build the documentation

Logo Optunity 1.1.1

by claesenm - September 30, 2015, 07:06:17 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 7817 views, 1807 downloads, 3 subscriptions

About: Optunity is a library containing various optimizers for hyperparameter tuning. Hyperparameter tuning is a recurrent problem in many machine learning tasks, both supervised and unsupervised.This package provides several distinct approaches to solve such problems including some helpful facilities such as cross-validation and a plethora of score functions.

Changes:

This minor release has the same feature set as Optunity 1.1.0, but incorporates several bug fixes, mostly related to the specification of structured search spaces.


Logo libnabo 1.0.6

by smagnenat - August 5, 2015, 12:16:40 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 13739 views, 2904 downloads, 3 subscriptions

About: libnabo is a fast K Nearset Neighbor library for low-dimensional spaces.

Changes:
  • Reset point indices of results with distances exceeding threshold (#23, #24)
  • Fine tune the find_package() capability and add uninstall target (#22)
  • Fixed compiler warning (#18)
  • Added OpenMP support (#20, #21)
  • Build type tuning (#19)
  • Fix: terminal comma in enum requires C++11
  • Fix UBSAN error calculating maxNodeCount (#16, #17)
  • Fixed tiny (yet significant) error in the Python doc strings (#15)
  • Compile static lib with PIC (#14)
  • Added configure scripts for full catkinization
  • Catkinization of libnabo (following REP136)
  • Update README.md Added Simon as the maintainer.
  • [test] use CLOCK_PROF for NetBSD build
  • Fixed CppCheck warning. Fix broken install when doxygen is not found
  • Fix cmake stylistic issue
  • Make python install respect custom CMAKE_INSTALL_PREFIX
  • Fix broken install when doxygen is not found

Logo JMLR libDAI 0.3.2

by jorism - July 17, 2015, 15:59:55 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 53028 views, 9885 downloads, 4 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarWhole Star
(based on 1 vote)

About: libDAI provides free & open source implementations of various (approximate) inference methods for graphical models with discrete variables, including Bayesian networks and Markov Random Fields.

Changes:

Release 0.3.2 fixes various bugs and adds GLC (Generalized Loop Corrections) written by Siamak Ravanbakhsh.


Logo Recur 1

by douglasbagnall - June 16, 2015, 12:06:05 CET [ Project Homepage BibTeX Download ] 1959 views, 511 downloads, 2 subscriptions

About: Recur is a collection of Gstreamer plugins and language modelling tools based on recurrent neural networks.

Changes:

Initial Announcement on mloss.org.


Logo ClusterEval 1.1

by cdevries - May 18, 2015, 22:01:01 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 5698 views, 1327 downloads, 2 subscriptions

About: Cluster quality Evaluation software. Implements cluster quality metrics based on ground truths such as Purity, Entropy, Negentropy, F1 and NMI. It includes a novel approach to correct for pathological or ineffective clusterings called 'Divergence from a Random Baseline'.

Changes:

Moved project to GitHub.


Logo XGBoost v0.4.0

by crowwork - May 12, 2015, 08:57:16 CET [ Project Homepage BibTeX Download ] 15534 views, 2749 downloads, 3 subscriptions

About: xgboost: eXtreme Gradient Boosting It is an efficient and scalable implementation of gradient boosting framework. The package includes efficient linear model solver and tree learning algorithm. The package can automatically do parallel computation with OpenMP, and it can be more than 10 times faster than existing gradient boosting packages such as gbm or sklearn.GBM . It supports various objective functions, including regression, classification and ranking. The package is made to be extensible, so that user are also allowed to define there own objectives easily. The newest version of xgboost now supports distributed learning on various platforms such as hadoop, mpi and scales to even larger problems

Changes:
  • Distributed version of xgboost that runs on YARN, scales to billions of examples

  • Direct save/load data and model from/to S3 and HDFS

  • Feature importance visualization in R module, by Michael Benesty

  • Predict leaf index

  • Poisson regression for counts data

  • Early stopping option in training

  • Native save load support in R and python

  • xgboost models now can be saved using save/load in R

  • xgboost python model is now pickable

  • sklearn wrapper is supported in python module

  • Experimental External memory version


Logo Nilearn 0.1.2

by goulagman - April 29, 2015, 16:16:25 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 3089 views, 735 downloads, 3 subscriptions

About: Nilearn is a Python module for fast and easy statistical learning on NeuroImaging data. It leverages the scikit-learn Python toolbox for multivariate statistics with applications such as predictive modelling, classification, decoding, or connectivity analysis.

Changes:

Initial Announcement on mloss.org.


Logo Blocks 0.1

by bartvm - March 30, 2015, 22:25:02 CET [ Project Homepage BibTeX Download ] 2063 views, 537 downloads, 3 subscriptions

About: A Theano framework for building and training neural networks

Changes:

Initial Announcement on mloss.org.


Logo Loom 0.2.10

by fritzo - March 19, 2015, 19:22:03 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 2225 views, 528 downloads, 2 subscriptions

About: A streaming inference and query engine for the Cross-Categorization model of tabular data.

Changes:

Initial Announcement on mloss.org.


Logo apsis 0.1.1

by fdiehl - March 17, 2015, 08:27:02 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 3071 views, 566 downloads, 2 subscriptions

About: A toolkit for hyperparameter optimization for machine learning algorithms.

Changes:

Initial Announcement on mloss.org.


Logo libcmaes 0.9.5

by beniz - March 9, 2015, 09:05:22 CET [ Project Homepage BibTeX Download ] 10822 views, 2072 downloads, 3 subscriptions

About: Libcmaes is a multithreaded C++11 library (with Python bindings) for high performance blackbox stochastic optimization of difficult, possibly non-linear and non-convex functions, using the CMA-ES algorithm for Covariance Matrix Adaptation Evolution Strategy. Libcmaes is useful to minimize / maximize any function, without information regarding gradient or derivability.

Changes:

This is a major release, with several novelties, improvements and fixes, among which:

  • step-size two-point adaptaion scheme for improved performances in some settings, ref #88

  • important bug fixes to the ACM surrogate scheme, ref #57, #106

  • simple high-level workflow under Python, ref #116

  • improved performances in high dimensions, ref #97

  • improved profile likelihood and contour computations, including under geno/pheno transforms, ref #30, #31, #48

  • elitist mechanism for forcing best solutions during evolution, ref 103

  • new legacy plotting function, ref #110

  • optional initial function value, ref #100

  • improved C++ API, ref #89

  • Python bindings support with Anaconda, ref #111

  • configure script now tries to detect numpy when building Python bindings, ref #113

  • Python bindings now have embedded documentation, ref #114

  • support for Travis continuous integration, ref #122

  • lower resolution random seed initialization


Logo Machine Learning Support System MALSS 0.5.0

by canard0328 - February 20, 2015, 15:56:02 CET [ Project Homepage BibTeX Download ] 1902 views, 552 downloads, 1 subscription

About: MALSS is a python module to facilitate machine learning tasks.

Changes:

Initial Announcement on mloss.org.


Logo fertilized forests 1.0beta

by Chrisl_S - January 23, 2015, 16:04:31 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 2499 views, 622 downloads, 1 subscription

About: The fertilized forests project has the aim to provide an easy to use, easy to extend, yet fast library for decision forests. It summarizes the research in this field and provides a solid platform to extend it. Offering consistent interfaces to C++, Python and Matlab and being available for all major compilers gives the user high flexibility for using the library.

Changes:

Initial Announcement on mloss.org.


Logo Rabit 0.1.0

by crowwork - January 21, 2015, 18:48:46 CET [ Project Homepage BibTeX Download ] 1859 views, 615 downloads, 1 subscription

About: rabit (Reliable Allreduce and Broadcast Interface) is a light weight library that provides a fault tolerant interface of Allreduce and Broadcast for portable , scalable and reliable distributed machine learning programs. Rabit programs can run on various platforms such as Hadoop, MPI and no installation is needed. Rabit now support kmeans clustering, and distributed xgboost: an extremely efficient disrtibuted boosted tree(GBDT) toolkit.

Changes:

Initial Announcement on mloss.org.


Logo ExtRESCAL 0.7.2

by nzhiltsov - January 20, 2015, 00:35:15 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 8399 views, 1568 downloads, 2 subscriptions

About: Scalable tensor factorization

Changes:
  • Improve (speed up) initialization of A by summation

Logo pyGPs 1.3.2

by mn - January 17, 2015, 13:08:43 CET [ Project Homepage BibTeX Download ] 8533 views, 1959 downloads, 4 subscriptions

About: pyGPs is a Python package for Gaussian process (GP) regression and classification for machine learning.

Changes:

Changelog pyGPs v1.3.2

December 15th 2014

  • pyGPs added to pip
  • mathematical definitions of kernel functions available in documentation
  • more error message added

Logo libAGF 0.9.8

by Petey - December 6, 2014, 02:35:39 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 16308 views, 3124 downloads, 2 subscriptions

About: C++ software for statistical classification, probability estimation and interpolation/non-linear regression using variable bandwidth kernel estimation.

Changes:

New in Version 0.9.8:

  • bug fixes: svm file conversion works properly and is more general

  • non-hierarchical multi-borders has 3 options for solving for the conditional probabilities: matrix inversion, voting, and matrix inversion over-ridden by voting, with re-normalization

  • multi-borders now works with external binary classifiers

  • random numbers resolve a tie when selecting classes based on probabilities

  • pair of routines, sort_discrete_vectors and search_discrete_vectors, for classification based on n-d binning (still experimental)

  • command options have been changed with many new additions, see QUICKSTART file or run the relevant commands for details


Logo linearizedGP 1.0

by dsteinberg - November 28, 2014, 07:02:54 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 2450 views, 533 downloads, 1 subscription

About: Gaussian processes with general nonlinear likelihoods using the unscented transform or Taylor series linearisation.

Changes:

Initial Announcement on mloss.org.


Logo pySPACE 1.2

by krell84 - October 29, 2014, 15:36:28 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 6202 views, 1205 downloads, 1 subscription

About: pySPACE is the abbreviation for "Signal Processing and Classification Environment in Python using YAML and supporting parallelization". It is a modular software for processing of large data streams that has been specifically designed to enable distributed execution and empirical evaluation of signal processing chains. Various signal processing algorithms (so called nodes) are available within the software, from finite impulse response filters over data-dependent spatial filters (e.g. CSP, xDAWN) to established classifiers (e.g. SVM, LDA). pySPACE incorporates the concept of node and node chains of the MDP framework. Due to its modular architecture, the software can easily be extended with new processing nodes and more general operations. Large scale empirical investigations can be configured using simple text- configuration files in the YAML format, executed on different (distributed) computing modalities, and evaluated using an interactive graphical user interface.

Changes:

improved testing, improved documentation, windows compatibility, more algorithms


Showing Items 21-40 of 116 on page 2 of 6: Previous 1 2 3 4 5 6 Next