Projects authored by jouni hartikainen.


Logo JMLR GPstuff 4.4

by avehtari - April 15, 2014, 15:26:49 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 8002 views, 2223 downloads, 1 subscription

Rating Whole StarWhole StarWhole StarWhole StarWhole Star
(based on 1 vote)

About: The GPstuff toolbox is a versatile collection of Gaussian process models and computational tools required for inference. The tools include, among others, various inference methods, sparse approximations and model assessment methods.

Changes:

2014-04-11 Version 4.4

New features

  • Monotonicity constraint for the latent function.

    • Riihimäki and Vehtari (2010). Gaussian processes with monotonicity information. Journal of Machine Learning Research: Workshop and Conference Proceedings, 9:645-652.
  • State space implementation for GP inference (1D) using Kalman filtering.

    • For the following covariance functions: Squared-Exponential, Matérn-3/2 & 5/2, Exponential, Periodic, Constant
    • Särkkä, S., Solin, A., Hartikainen, J. (2013). Spatiotemporal learning via infinite-dimensional Bayesian filtering and smoothing. IEEE Signal Processing Magazine, 30(4):51-61.
    • Simo Sarkka (2013). Bayesian filtering and smoothing. Cambridge University Press.
    • Solin, A. and Särkkä, S. (2014). Explicit link between periodic covariance functions and state space models. AISTATS 2014.

Improvements

  • GP_PLOT function for quick plotting of GP predictions
  • GP_IA now warns if it detects multimodal posterior distributions
  • much faster EP with log-Gaussian likelihood (numerical integrals -> analytical results)
  • faster WAIC with GP_IA array (numerical integrals -> analytical results)
  • New demos demonstrating new features etc.
    • demo_minimal, minimal demo for regression and classification
    • demo_kalman1, demo_kalman2
    • demo_monotonic, demo_monotonic2

Plus bug fixes