Project details for pyGPs

Screenshot pyGPs 1.0

by mn - October 1, 2013, 14:12:14 CET [ Project Homepage BibTeX Download ]

view (3 today), download ( 0 today ), 2 subscriptions

Description:

pyGPs is a Python project for Gaussian process (GP) regression and classification for machine learning.

We support two libraries: pyGP_PR and pyGP_OO. pyGP_PR is currently the default download, for pyGP_OO follow this link: https://github.com/marionmari/pyGP_OO.

pyGP_PR is a procedural implementation of GPs and follows structure and functionality of the gpml matlab implementaion by Carl Edward Rasmussen and Hannes Nickisch (Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch, 2013-01-21).

pyGP_OO is an object-oriented implemetation of GP regression and classificaion additionally supporting useful routines for the practical use of GPs, such as cross validation functionalities for evaluation as well as basic routines for iterative restarts for the GP hyperparameter optimization.

Changes to previous version:

Initial Announcement on mloss.org.

BibTeX Entry: Download
URL: Project Homepage
Supported Operating Systems: Platform Independent
Data Formats: Numpy
Tags: Classification, Regression, Gaussian Processes
Archive: download here

Other available revisons

Version Changelog Date
1.1

pyGPs v1.1 is released. It replaces pyGP_OO and contains substaintal updates in functionality and documentation. pyGP_PR v1.1 is released with substantial documentation updates and renamed (FN -> PR).

October 8, 2013, 12:35:28
1.0

Initial Announcement on mloss.org.

October 1, 2013, 14:12:14

Comments

No one has posted any comments yet. Perhaps you'd like to be the first?

Leave a comment

You must be logged in to post comments.